The doc and shortvrb Packages®

Frank Mittelbach*$
Printed January 25, 2026

This file is maintained by the KTEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Abstract

Roughly 30 years ago (version 1.0 was dated 1988/05/05) I wrote the
first version of the doc package, a package to provide code documentation
for TEX code. Since then it has been used all over the place to document
the IXTEX kernel and most of the packages that are nowadays available. The
core code of version 2 (which is the current version) exists since 1998, i.e.,
for 20 years.

If T would restart from scratch I would do a lot of things differently these
days and in fact several other people have tried to come up with better
solutions. However, as the saying goes, a bad standard is better than none,
doc has prevailed and changing it now in incompatible ways is probably not
really helpful.

So this is version 3 of the package with some smaller extensions that are
upwards compatible but hopefully serve well. Most important modifications
are the integration of the hypdoc package to enable links within the document
(in particular from the index) if so desired. Also integrated are the ideas
from the DoX package by Didier Verna (although I offer a different interface
that imho fits better with the rest of doc’s interfaces). Finally I updated a
few odds and ends.

*This file has version number v3.0q dated 2024/12/25.

fFurther commentary added at Royal Military College of Science by B. Hamilton Kelly;
English translation of parts of the original German commentary provided by Andrew Mills;
fairly substantial additions, particularly from newdoc, and documentation of post-v1.5q features
added at v1.7a by Dave Love (SERC Daresbury Lab).

TExtraction of shortvrb package added by Joachim Schrod (TU Darmstadt).

§Version 3 now integrates code from Didier Verna’s DoX package and some of his documenta-
tion was reused (a.k.a. stolen).

https://latex-project.org/bugs.html

Contents

1 Introduction 2 2.12 Setting the index entries . 10
2.13 Changing the default val-
2 The User Interface 2 ues of style parameters . . 11
2.1 The driver file. 2 2.14 Short input of verbatim
2.2 Package options 3 text pieces 11
2.3 General conventions . .. 4 2.15 Additional bells and
2.4 Describing the usage of whistles 12
macros and environments 5
2.5 Describing the definition 3 Examples and basic usage
of macros and environ- summary 14
ments ..o 5 3.1 DBasic usage summary . . . 14
2.6 Formatting names in the 3.2 Examples 15
margin 6
2.7 PI‘OVidiIIg further docu- 4 Incompatibilities between
mentation items. 6 version 2 and 3 17
2.8 Displaying sample code
verbatim 8 5 Old interfaces no longer re-
2.9 Using a special escape ally needed 17
character 8 5.1 makeindex bugs 17
2.10 Cross-referencing all 5.2 File transmission issues . 18
macros used 8
2.11 Producing the actual in- 6 Introduction to previous re-
dex entries. 9 leases 19

1 Introduction

This is a new version of the doc package, written roughly 30 years after the initial
release. As the package has been used for so long (and largely unchanged) it is
absolutely important to preserve existing interfaces, even if we can agree that they
could have been done better.

So this is a light-weight change, basically adding hyperlink support and adding
a way to provide generally doc elements (not just macros and environments) and
try to do this properly (which wasn’t the case for environments either in the past).
The ideas for this have been stolen from the DoX package by Didier Verna even
though I didn’t keep his interfaces.

Most of the documentation below is from the earlier release which accounts for
some inconsistencies in presentation, mea culpa.

2 The User Interface

2.1 The driver file

If one is going to document a set of macros with the doc package one has to
prepare a special driver file which produces the formatted document. This driver
file has the following characteristics:

\DocInput
\IndexInput

\documentclass [{options)]{{document-class)}
\usepackage{doc}
(preamble)
\begin{document}
(special input commands)
\end{document}

The (document-class) might be any document class, I usually use article.

In the (preamble) one should place declarations which manipulate the behavior
of the doc package like \DisableCrossrefs or \OnlyDescription.

Finally the (special input commands) part should contain one or more
\DocInput{(file name)} and/or \IndexInput{(file name)} commands. The
\DocInput command is used for files prepared for the doc package whereas
\IndexInput can be used for all kinds of macro files. See page 13 for more details
of \IndexInput. Multiple \DocInputs can be used with a number of included
files which are each self-contained self-documenting packages—for instance, each
containing \maketitle.

As an example, the driver file for the doc package itself is the following text
surrounded by %<*driver> and %</driver>. To produce the documentation you
can simply run the .dtx file through ETEX in which case this code will be executed
(loading the document class 1txdoc, etc.) or you can extract this into a separate
file by using the docstrip program. The line numbers below are added by doc’s
formatting. Note that the class ltxdoc has the doc package preloaded.

1 (xdriver)

2 \documentclass{ltxdoc}

3

4 \usepackage [T1]{fontenc}
5 \usepackage{xspace}

6

7 \OnlyDescription

8

9 \EnableCrossrefs

10 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready
11 \CodelineIndex

12 \RecordChanges % Gather update information

13 \SetupDoc{reportchangedates}

14 %\OnlyDescription % comment out for implementation details
15 \setlength\hfuzz{15pt} 7 don’t show so many

16 \hbadness=7000 % over- and underfull box warnings

17 \begin{document}

18 \DocInput{doc.dtx}
19 \end{document}

20 (/driver)

2.2 Package options

Starting with version 3 the doc package now offers a small number of package
options to modify its overall behavior. These are:

hyperref, nohyperref Boolean (default true). Load the hyperref package and
make index references to code lines and pages and other items clickable links.

\SetupDoc

macrocode (env.)

nohyperref is the complementary key.

multicol, nomulticol Boolean (default true). Load the multicol package for
use in typesetting the index and the list of changes. nomulticol is the
complementary key.

debugshow Boolean (default false). Provide various tracing information at the
terminal and in the transcript file. In particular show which elements are
indexed.

noindex Boolean (default false). If set, all automatic indexing is suppressed.
This option can also be used on individual elements as described below.

noprint Boolean (default false). If set, then printing of element names in the
margin will be suppressed. This option can also be used on individual ele-
ments as described below.

reportchangedates Boolean (default false). If set, then change entries list the
date after the version number in the change log.

Instead of providing options to the doc package you can call \SetupDoc and
provide them there. This allows, for example, to change default values in case doc
was already loaded earlier.

2.3 General conventions

A TgX file prepared to be used with the ‘doc’ package consists of ‘documentation
parts’ intermixed with ‘definition parts’.

Every line of a ‘documentation part’ starts with a percent sign (%) in col-
umn one. It may contain arbitrary TEX or KTEX commands except that the
character ‘%’ cannot be used as a comment character. To allow user comments,
the characters ~~A and ~~X are both defined as a comment character later on.!
Such ‘metacomments’ may be also be included simply by surrounding them with
\iffalse ... \fi.

All other parts of the file are called ‘definition parts’. They contain fractions
of the macros described in the ‘documentation parts’.

If the file is used to define new macros (e.g. as a package file in the \usepackage
macro), the ‘documentation parts’ are bypassed at high speed and the macro
definitions are pasted together, even if they are split into several ‘definition parts’.

On the other hand, if the documentation of these macros is to be produced,
the ‘definition parts’ should be typeset verbatim. To achieve this, these parts are
surrounded by the macrocode environment. More exactly: before a ‘definition
part’ there should be a line containing

%uuuu\begin{macrocode}
and after this part a line

%uuuu\end{macrocode}

1In version 2 it was only ~~A, but many keyboards combine ~ and A and automatically turn

it into “A”; so ~~X was added as an alternative in version 3.

macrocode* (env.)

\DescribeMacro

\DescribeEnv

macro (env.)

\MacrocodeTopsep (skip)
\MacroTopsep (skip)
\MacroIndent (dimen)

There must be exactly four spaces between the % and \end{macrocode} — TEX is
looking for this string and not for the macro while processing a ‘definition part’.
Inside a ‘definition part’ all TEX commands are allowed; even the percent sign
could be used to suppress unwanted spaces etc.
Instead of the macrocode environment one can also use the macrocodex en-
vironment which produces the same results except that spaces are printed as
characters.

2.4 Describing the usage of macros and environments

When you describe a new macro you may use \DescribeMacro to indicate that
at this point the usage of a specific macro is explained. It takes one argument
which will be printed in the margin and also produces a special index entry. For
example, I used \DescribeMacro{\DescribeMacro} to make clear that this is the
point where the usage of \DescribeMacro is explained.

As the argument to \DescribeMacro is a command name, many people got
used to using the (incorrect) short form, i.e., omitting the braces around the
argument as in \DescribeMacro\foo. This does work as long as the macro name
consists only of “letters”. However, if the name contains special characters that are
normally not of type “letter” (such as @, or in case of expl3 _ and :) this will fail
dramatically. \DescribeMacro would then receive only a partial command name
(up to the first “non-letter”) e.g., \DescribeMacro\foo@bar would be equivalent
to \DescribeMacro{\foo} @bar and you can guess that this can resulting in both
incorrect output and possibly low-level error messages.

An analogous macro \DescribeEnv should be used to indicate that a KTEX
environment is explained. It will produce a somewhat different index entry and a
slightly different display in the margin. Below I used \DescribeEnv{verbatim}.

Starting with version 3 the \Describe... commands accept an optional ar-
gument in which you can specify either noindex or noprint to suppress indexing
or printing for that particular instance. Using both would be possible too, but
pointless as then the commands wouldn’t do anything any more.

2.5 Describing the definition of macros and environments

To describe the definition of a (new) macro we use the macro environment. It has
one argument: the name of the new macro.? This argument is also used to print
the name in the margin and to produce an index entry. Actually the index entries
for usage and definition are different to allow an easy reference. This environment
might be nested. In this case the labels in the margin are placed under each
other. There should be some text—even if it’s just an empty \mbox{}—in this
environment before \begin{macrocode} or the marginal label won’t print in the
right place.

In fact it is now allowed to specify several macros in the argument, separated
by commas. This is a short form for starting several macro environments in direct
succession. Of course, you should then have also only one matching \end{macro}.

There also exist four style parameters: \MacrocodeTopsep and \MacroTopsep
are used to control the vertical spacing above and below the macrocode and
the macro environment, \MacroIndent is used to indent the lines of code and

2This is a change to the style design I described in TUGboat 1041 (Jan. 89). We finally
decided that it would be better to use the macro name with the backslash as an argument.

\MacroFont

environment (env.)

\PrintDescribeMacro
\PrintDescribeEnv
\PrintMacroName
\PrintEnvName

New in v3

\NewDocElement

\MacroFont holds the font and a possible size change command for the code
lines, the verbatim[*] environment and the macro names printed in the mar-
gin. If you want to change their default values in a class file (like 1tugboat.cls)
use the \DocstyleParms command described below. Starting with release 2.0a
it can now be changed directly as long as the redefinition happens before the
\begin{document} (if you change it later you might see strange typesetting ef-
fects if you are unlucky).

\MacroFont does not alter the font of \verb or \verb* because it is often used
to make the font size of the code displays smaller, which would look odd if used
within a paragraph. If you decide to use a different font family and want to use
the same family with \verb you need to alter the font setup for \ttfamily in
addition to \MacroFont.

For documenting the definition of environments one can use the environment
environment which works like the macro environment, except that it expects an
(env-name) (without a backslash) as its argument and internally provides different
index entries suitable for environments. Nowadays you can alternatively specify a
comma-separated list of environments.

Starting with version 3 these environments accept an optional argument in
which you can specify noindex or noprint or both to suppress indexing or printing
for that particular instance. If any such setting is made on the environment level it
overwrites whatever default was given when the doc element was defined or when
the package was loaded.

2.6 Formatting names in the margin

As mentioned earlier, some macros and environment print their arguments in
the margin. The actual formatting is done by four macros which are user defin-
able.® They are named \PrintDescribeMacro and \PrintDescribeEnv (defin-
ing how \DescribeMacro and \DescribeEnv behave) and \PrintMacroName and
\PrintEnvName (called by the macro and environment environments, respec-
tively).

2.7 Providing further documentation items

Out of the box the doc package offers the above commands and environments to
document macros and environments. With version 3 this has now been extended in
a generic fashion so that you can easily provide your own items, such as counters,
length register, options etc.

The general syntax for providing a new doc element is

\NewDocElement [(options)]{{element-name)}{{env-name)}

By convention the (element-name) has the first letter uppercased as in Env or
Macro.
Such a declaration will define for you

e the command \Describe(element-name) which has the syntax

\Describe(element-name) [{options)1{{element)}

3You may place the changed definitions in a separate package file or at the beginning of the
documentation file. For example, if you don’t like any names in the margin but want a fine index
you can simply redefine them accept their argument and do nothing with it.

\RenewDocElement

\ProvideDocElement

e the environment (env-name) which has the syntax
\begin{(env-name)} [{options)]{(element)?}

e the display command \PrintDescribe(element-name) with the syntax
\PrintDescribe(element-name){{element)}

e and the \Print(element-name)Name display command for the environment.

If any of the commands or the environment is already defined (which especially
with the (env-name) is a danger) then you will receive an error telling you so.

If you want to modify an existing doc element use \RenewDocElement instead.

For example, the already provided “Env” doc element could have been defined
simply by making the declaration \NewDocElement{Env}{environment} though
that’s not quite what has been done, as we will see later.

This declaration does nothing when the doc element is already declared, oth-
erwise it works like \NewDocElement. It can be useful if you have many documen-
tation files that you may want to process individually as well as together.

The (options) are keyword/value and define further details on how that doc
element should behave. They are:

macrolike Boolean (default false). Does this doc element starts with a back-
slash?

envlike Boolean. Complementary option to macrolike.

toplevel Boolean (default true). Should all a top-level index entry be made?
If set to false then either no index entries are produced or only grouped
index entries (see idxgroup for details).

notoplevel Boolean. Complementary option to toplevel.

idxtype String (default (env-name)). What to put (in parentheses if non-empty)
at the end of a top-level index entry.

printtype String (default (env-name)). What to put (in parentheses if non-
empty) after an element name in the margin.

idxgroup String (default (env-name)s). Name of the top-level index entry if
entries are grouped. They are only grouped if this option is non-empty.

noindex Boolean (default false). If set this will suppress indexing for elements
of this type. This setting overwrite any global setting of noindex.

noprint Boolean (default false). If set this will suppress printing the element
name in the margin. This setting overwrite any global setting of noprint.

As usual giving a boolean option without a value sets it to true.

verbatim (env.)

verbatim* (env.)
\verb

\SpecialEscapechar

\DisableCrossrefs
\EnableCrossrefs

\DoNotIndex

\PageIndex

2.8 Displaying sample code verbatim

It is often a good idea to include examples of the usage of new macros in the text.
Because of the % sign in the first column of every row, the verbatim environment
is slightly altered to suppress those characters.* The verbatim* environment is
changed in the same way. The \verb command is re-implemented to give an
error report if a newline appears in its argument. The verbatim and verbatimsx
environments set text in the style defined by \MacroFont (§2.5).

2.9 Using a special escape character

If one defines complicated macros it is sometimes necessary to introduce a new
escape character because the ‘\’ has got a special \catcode. In this case one can
use \SpecialEscapechar to indicate which character is actually used to play the
role of the ‘\’. A scheme like this is needed because the macrocode environment
and its counterpart macrocode* produce an index entry for every occurrence of a
macro name. They would be very confused if you didn’t tell them that you’d
changed \catcodes. The argument to \SpecialEscapechar is a single-letter
control sequence, that is, one has to use \| for example to denote that ‘|’ is
used as an escape character. \SpecialEscapechar only changes the behavior of
the next macrocode or macrocodex environment.

The actual index entries created will all be printed with \ rather than |, but this
probably reflects their usage, if not their definition, and anyway must be preferable
to not having any entry at all. The entries could be formatted appropriately, but
the effort is hardly worth it, and the resulting index might be more confusing (it
would certainly be longer!).

2.10 Cross-referencing all macros used

As already mentioned, every macro name used within a macrocode or macrocodesx
environment will produce an index entry. In this way one can easily find
out where a specific macro is used. Since TEX is considerably slower® when
it has to produce such a bulk of index entries one can turn off this feature
by using \DisableCrossrefs in the driver file. To turn it on again just use
\EnableCrossrefs.f

But also finer control is provided. The \DoNotIndex macro takes a list of
macro names separated by commas. Those names won’t show up in the index.
You might use several \DoNotIndex commands: their lists will be concatenated.
In this article I used \DoNotIndex for all macros which are already defined in
TRX.

All three above declarations are local to the current group.

Production (or not) of the index (via the \makeindex command) is controlled
by using or omitting the following declarations in the driver file preamble; if
neither is used, no index is produced. Using \PageIndex makes all index en-

4These macros were written by Rainer Schopf [8]. He also provided a new verbatim environ-
ment which can be used inside of other macros.

5This comment was written about 30 years ago. TEX is still considerably slower but while
it took minutes to process a large document (such as the IATEX kernel documentation) it takes
seconds or less these days. Thus \DisableCrossrefs isn’t really that necessary these days.

6Actually, \EnableCrossrefs changes things more drastically; any following call to
\DisableCrossrefs which might be present in the source will be ignored.

\CodelineIndex

\theCodelineNo

\CodelineNumbered

\actualchar
\quotechar
\encapchar

\levelchar

\SpecialMainMacroIndex

\SpecialMainEnvIndex

\SpecialMacroIndex
\SpecialEnvIndex

tries refer to their page number; with \CodelineIndex, index entries produced
by \DescribeMacro and \DescribeEnv and possibly further \Describe... com-
mands refer to a page number but those produced by the macro environment (or
other doc element environments) refer to the code lines, which will be numbered
automatically.” The style of this numbering can be controlled by defining the
macro \theCodelineNo. Its default definition is to use scriptsize arabic numerals;
a user-supplied definition won’t be overwritten.

When you don’t wish to get an index but want your code lines numbered use
\CodelineNumbered instead of \CodelineIndex. This prevents the generation of
an unnecessary .idx file.

2.11 Producing the actual index entries

Several of the aforementioned macros will produce some sort of index entries.
These entries have to be sorted by an external program—the current implemen-
tation assumes that the makeindex program by Chen [4] is used.

But this isn’t built in: one has only to redefine some of the following macros
to be able to use any other index program. All macros which are installation de-
pendent are defined in such a way that they won’t overwrite a previous definition.
Therefore it is safe to put the changed versions in a package file which might be
read in before the doc package.

To allow the user to change the specific characters recognized by his or her index
program all characters which have special meaning in the makeindex program are
given symbolic names.® However, all characters used should be of \catcode other
than ‘letter’ (11).

The \actualchar is used to separate the ‘key’ and the actual index entry. The
\quotechar is used before a special index program character to suppress its special
meaning. The \encapchar separates the indexing information from a letter string
which makeindex uses as a TEX command to format the page number associated
with a special entry. It is used in this package to apply the \main and the \usage
commands. Additionally \levelchar is used to separate ‘item’, ‘subitem’ and
‘subsubitem’ entries.

It is a good idea to stick to these symbolic names even if you know which index
program is used. In this way your files will be portable.

TODO: describe old \SpecialMainIndez and \SpecialUsagelndex

To produce a main index entry for a macro the \SpecialMainMacroIndex
macro’ may be used. It is called ‘special’ because it has to print its argument
verbatim. A similar macro, called \SpecialMainEnvIndex is used for indexing
the main definition point of an environment.'”

To index the usage of a macro or an environment \SpecialMacroIndex and
\SpecialEnvIndex may be used.

All these macros are normally used by other macros; you will need them only
in an emergency.

If further code elements are declared with \NewDocElement{(name)}... then

"The line number is actually that of the first line of the first macrocode environment in the
macro environment.

8] don’t know if there exists a program which needs more command characters, but I hope
not.

9This macro is called by the macro environment.

10This macro is called by the environment environment.

\SpecialIndex

\SpecialShortIndex

\SortIndex

\verbatimchar

*

\PrintIndex

this sets up additional indexing commands, e.g., \SpecialMain(name)Index.

The macrocode environment is automatically indexing macros (normally by
code line number). You can (with care) also do this manually by \SpecialIndex.
However, note that if \CodelineIndex is used this will generate an entry referring
to the last code line which is usually not what you want. It does, however, make
some sense if you always refer to pages only, i.e., if you use \PageIndex.

For single character macros, e.g., \{, doesn’t always work correctly. For this
reason there is now also a special variant the can produce correct index entries for
them.

Additionally a \SortIndex command is provided. It takes two arguments—the
sort key and the actual index entry.

But there is one characteristic worth mentioning: all macro names in the index
are typeset with the \verb* command. Therefore one special character is needed
to act as a delimiter for this command. To allow a change in this respect, again
this character is referenced indirectly, by the macro \verbatimchar. It expands
by default to + but if your code lines contain macros with ‘+’ characters in their
names (e.g. when you use \+) then that caused a problem because you ended up
with an index entry containing \verb+\++ which will be typeset as ‘\+4+’ and not
as ‘\+’. In version 3 this is now automatically taken care of (with the help of the
\SpecialShortIndex command).

We also provide a * macro. This is intended to be used for index entries like

index entries
Special macros for ~

Such an entry might be produced with the line
\index{index entries>Special macros for *}

assuming that > is the \levelchar used by the index processor.

You can’t use \levelchar in this situation because if \index is directly used
in the document then it’s argument is written out fully verbatim. However, if you
define your own index commands, expansion will happen on the way to the .idx
file; and in that case you can use \levelchar—this is what the doc macros do.
This then allows to change the indexing syntax easily, e.g.,

\newcommand\1ltxconcept [2] {\index{#1\levelchar#2}}

\ltxconcept{index entries}{Special macros for *}

2.12 Setting the index entries

After the first formatting pass through the .dtx file you need to sort the index
entries written to the .idx file using makeindex or your favorite alternative. You
need a suitable style file for makeindex (specified by the -s switch). A suitable one
is supplied with doc, called gind.ist.

To read in and print the sorted index, just put the \PrintIndex command
as the last (commented-out, and thus executed during the documentation pass
through the file) command in your package file. Precede it by any bibliography
commands necessary for your citations. Alternatively, it may be more convenient
to put all such calls amongst the arguments of the \MaybeStop macro, in which
case a \Finale command should appear at the end of your file.

10

theindex (env.) Contrary to standard ETEX, the index is typeset in three columns by de-
IndexColumns (counter) fault. This is controlled by the IXTEX counter ‘IndexColumns’ and can therefore
be changed with a \setcounter declaration. Additionally one doesn’t want to
start a new page unnecessarily. Therefore the theindex environment is redefined.
\IndexMin (dimen) When the theindex environment starts it will measure how much space is left on
the current page. If this is more than \IndexMin then the index will start on this

page. Otherwise \newpage is called.
Then a short introduction about the meaning of several index entries is typeset
(still in onecolumn mode). Afterwards the actual index entries follow in multi-
\IndexPrologue column mode. You can change this prologue with the help of the \IndexPrologue
macro. Actually the section heading is also produced in this way, so you'd better

write something like:

\IndexPrologue{\section*{Index} The index entries underlined ...}

When the theindex environment is finished the last page will be reformatted to

produce balanced columns. This improves the layout and allows the next article to
\IndexParms start on the same page. Formatting of the index columns (values for \columnssep

etc.) is controlled by the \IndexParms macro. It assigns the following values:

\parindent =0.0pt \columnsep =15.0pt
\parskip =0.0pt plus 1.0pt \rightskip = 15.0pt
\mathsurround = 0.0pt \parfillskip= —15.0pt

\@idxitem Additionally it defines \@idxitem (which will be used when an \item command
is encountered) and selects \small size. If you want to change any of these values
you have to define them all.

\main The page numbers for main index entries are encapsulated by the \main macro
\usage (underlining its argument) and the numbers denoting the description are encap-
\code sulated by the \usage macro (which produces italics). \code encapsulates page
or code line numbers in entries generated by parsing the code inside macrocode
environments. As usual these commands are user definable.

2.13 Changing the default values of style parameters

\DocstyleParms If you want to overwrite some default settings made by the doc package, you can
either put your declarations in the driver file (that is after doc.sty is read in) or
use a separate package file for doing this work. In the latter case you can define
the macro \DocstyleParms to contain all assignments. This indirect approach is
necessary if your package file might be read before the doc.sty, when some of the
registers are not allocated. Its default definition is null.

The doc package currently assigns values to the following registers:

\IndexMin =380.0pt \MacroTopsep =7.0pt plus 2.0pt minus 2.0pt
\marginparwidth=126.0pt \MacroIndent =10.66406pt

\marginparpush =0.0pt \MacrocodeTopsep = 3.0pt plus 1.2pt minus 1.0pt
\tolerance =1000

2.14 Short input of verbatim text pieces

\MakeShortVerb It is awkward to have to type, say, \verb|... | continually when quoting verbatim
\MakeShortVerb*

\DeleteShortVerb
11

\meta

\OnlyDescription
\MaybeStop
\StopEventually

\Finale

\maketitle

\ps@titlepage

\AlsoImplementation

bits (like macro names) in the text, so an abbreviation mechanism is provided. Pick
a character (c¢)—one which normally has catcode ‘other’ unless you have very good
reason not to—which you don’t envisage using in the text, or not using often. (I
like ", but you may prefer | if you have " active to do umlauts, for instance.) Then
if you say \MakeShortVerb{\(c)} you can subsequently use (c)(text)(c) as the
equivalent of \verb(c)(text)(c); analogously, the *-form \MakeShortVerb*{\(c)}
gives you the equivalent of \verb*{c)(text)(c). Use \DeleteShortVerb{\(c)} if
you subsequently want (c) to revert to its previous meaning—you can always turn
it on again after the unusual section. The ‘short verb’ commands make global
changes. The abbreviated \verb may not appear in the argument of another com-
mand just like \verb. However the ‘short verb’ character may be used freely in
the verbatim and macrocode environments without ill effect. \DeleteShortVerb
is silently ignored if its argument does not currently represent a short verb char-
acter. Both commands type a message to tell you the meaning of the character is
being changed.

Please remember that the command \verb cannot be used in arguments of
other commands. Therefore abbreviation characters for \verb cannot be used
there either.

This feature is also available as a sole package, shortvrb.

2.15 Additional bells and whistles

We provide macros for logos such as WEB, AAS-TEX, BIBTRX, SUTEX and
PraiN TEX. Just type \Web, \AmSTeX, \BibTeX, \S1iTeX or \PlainTeX, respec-
tively. IMTEX and TEX are already defined in latex.tex.

Another useful macro is \meta which has one argument and produces some-
thing like (dimen parameter).

You can use the \OnlyDescription declaration in the driver file to suppress
the last part of your document (which presumably exhibits the code). To make
this work you have to place the command \MaybeStop at a suitable point in your
file. This macro'! has one argument in which you put all information you want to
see printed if your document ends at this point (for example a bibliography which
is normally printed at the very end). When the \OnlyDescription declaration
is missing the \MaybeStop macro saves its argument in a macro called \Finale
which can afterwards be used to get things back (usually at the very end). Such
a scheme makes changes in two places unnecessary.

Thus you can use this feature to produce a local guide for the TEX users which
describes only the usage of macros (most of them won’t be interested in your
definitions anyway). For the same reason the \maketitle command is slightly
changed to allow multiple titles in one document. So you can make one driver file
reading in several articles at once. To avoid an unwanted pagestyle on the title
page the \maketitle command issues a \thispagestyle{titlepage} declaration
which produces a plain page if the titlepage page style is undefined. This allows
class files like ltugboat.cls to define their own page styles for title pages.

Typesetting the whole document is the default. However, this default can also

M For about 30 years this macro was called \StopEventually which was due to a “false friend”
misunderstanding. In the German language the word “eventuell” mean roughly “perhaps” which
isn’t quite the same as “eventually”. But given that this is now used for so long and all over
the place we can’t drop the old name. So it is still there to allow processing all the existing
documentation.

12

\IndexInput

\changes

\RecordChanges
\PrintChanges

\GlossaryMin (dimen)
\GlossaryPrologue
\GlossaryParms
GlossaryColumns (counter)

be explicitly selected using the declaration \AlsoImplementation. This over-
writes any previous \OnlyDescription declaration. The KTEX 2s distribution,
for example, is documented using the 1txdoc class which allows for a configura-
tion file 1txdoc.cfg. In such a file one could then add the statement

\AtBeginDocument{\AlsoImplementation}

to make sure that all documents will show the code part.

Last but not least I defined an \IndexInput macro which takes a file name as
an argument and produces a verbatim listing of the file, indexing every command
as it goes along. This might be handy, if you want to learn something about macros
without enough documentation. I used this feature to cross-reference latex.tex
getting a verbatim copy with about 15 pages index.!?

To maintain a change history within the file, the \changes command may be
placed amongst the description part of the changed code. It takes three arguments,
thus:

\changes{(version)}{(date)}{(text)}

The changes may be used to produce an auxiliary file (WTEX’s \glossary mech-
anism is used for this) which may be printed after suitable formatting. The
\changes macro generates the printed entry in such a change history; because
old versions'® of the makeindex program limit such fields to 64 characters, care
should be taken not to exceed this limit when describing the change. The actual
entry consists of the (version), the \actualchar, the current macro name, a colon,
the \levelchar, and, finally, the (text). The result is a glossary entry for the
(version), with the name of the current macro as subitem. Outside the macro en-
vironment, the text \generalname is used instead of the macro name. When refer-
ring to macros in change descriptions it is conventional to use \cs{{macroname)?}
rather than attempting to format it properly and using up valuable characters in
the entry with old makeindex versions.

Note that in the history listing, the entry is shown with the page number
that corresponds to its place in the source, e.g., general changes put at the very
beginning of the file will show up with page number “1”, change entries placed
elsewhere might have different numbers (not necessarily always very useful unless
you are careful).

To cause the change information to be written out, include \RecordChanges in
the driver file. To read in and print the sorted change history (in two columns), just
put the \PrintChanges command as the last (commented-out, and thus executed
during the documentation pass through the file) command in your package file.
Alternatively, this command may form one of the arguments of the \MaybeStop
command, although a change history is probably not required if only the de-
scription is being printed. The command assumes that makeindex or some other
program has processed the .glo file to generate a sorted .gls file. You need a
special makeindex style file; a suitable one is supplied with doc, called gglo.ist.

The \GlossaryMin, \GlossaryPrologue and \GlossaryParms macros and the
counter GlossaryColumns are analogous to the \Index... versions. (The BTEX
‘glossary’ mechanism is used for the change entries.)

121t took quite a long time and the resulting .idx file was longer than the .dvi file. Actually
too long to be handled by the makeindex program directly (on our MicroVAX) but the final result
was worth the trouble.

L3Before 2.6.

13

\bslash

\MakePrivateLetters

\DontCheckModules
\CheckModules
\Module
\AltMacroFont

StandardModuleDepth
(counter)

From time to time, it is necessary to print a \ without being able to use
the \verb command because the \catcodes of the symbols are already firmly
established. In this instance we can use the command \bslash presupposing, of
course, that the actual font in use at this point contains a ‘backslash’ as a symbol.
Note that this definition of \bslash is expandable; it inserts a \15. This means
that you have to \protect it if it is used in ‘moving arguments’.

If your macros \catcode anything other than @ to ‘letter’, you should redefine
\MakePrivateLetters so that it also makes the relevant characters ‘letters’ for
the benefit of the indexing. The default definition is just \makeatletter.

The ‘module’ directives of the docstrip system [6] are normally recognized and
invoke special formatting. This can be turned on and off in the .dtx file or the
driver file using \CheckModules and \DontCheckModules. If checking for module
directives is on (the default) then code in the scope of the directives is set as
determined by the hook \AltMacroFont, which gives small italic typewriter by
default in the New Font Selection Scheme but just ordinary small typewriter in
the old one, where a font such as italic typewriter can’t be used portably (plug
for NFSS); you will need to override this if you don’t have the italic typewriter
font available. Code is in such a scope if it’s on a line beginning with %< or is
between lines starting with %<*(name list)> and %</(name list)>. The directive is
formatted by the macro \Module whose single argument is the text of the directive
between, but not including, the angle brackets; this macro may be re-defined in
the driver or package file and by default produces results like (+foo | bar) with no
following space.

Sometimes (as in this file) the whole code is surrounded by modules to pro-
duce several files from a single source. In this case it is clearly not appropriate
to format all code lines in a special \AltMacroFont. For this reason a counter
StandardModuleDepth is provided which defines the level of module nesting which
is still supposed to be formatted in \MacroFont rather then \AltMacroFont. The
default setting is 0, for this documentation it was set to

\setcounter{StandardModuleDepth}{1}

at the beginning of the file.

3 Examples and basic usage summary

3.1 Basic usage summary
To sum up, the basic structure of a .dtx file without any refinements is like this:
% (waffle). ..

% \DescribeMacro{\fred}
% (description of fred’s use)

% \MaybeStop{(ﬁnakzcode)}

% \begin{macro}{\fred}

% (commentary on macro fred)
%uuuu\begin{macrocode}
(code for macro fred)
%uuuu\end{macrocode}

14

% \end{macro}

% \Finale \PrintIndex \PrintChanges

For further examples of the use of most—if not all—of the features described
above, consult the doc.dtx source itself.

3.2 Examples

The default setup includes definitions for the doc elements “macro” and “environ-
ment”. They correspond to the following declarations:

\NewDocElement [macrolike = true ,

idxtype =,
idxgroup = ,
printtype =

J{Macro}{macro}

\NewDocElement [macrolike = false ,
idxtype = env. ,

idxgroup = environments ,

printtype = \textit{env.}
J{Env}{environment}

To showcase the new features of doc version 3 to some extend, the current
documentation is done by redefining these declarations and also adding a few
additional declarations on top.

For any internal command we document we use Macro and put all of them
under the heading “I4TEX commands” (note the use of \actualchar):

\RenewDocElement [macrolike = true ,
toplevel = false,
idxtype =,
idxgroup = LaTeX commands\actualchar\LaTeX{} commands ,
printtype
1{Macro}{macro}

We only have package environments so we use Env for those and group them
as well:

\RenewDocElement [macrolike = false ,
toplevel = false,
idxtype = env. ,
idxgroup = Package environments,
printtype = \textit{env.}
J{Env}{environment}

All the interface commands are also grouped together under the label “Package
commands”’, we use InterfaceMacro for them:

\NewDocElement [macrolike = true ,

toplevel = false,

idxtype =,

idxgroup = Package commands,
printtype =

J{InterfaceMacro}{imacro}

15

And since we also have a few obsolete interfaces we add yet another category:

\NewDocElement [macrolike = true ,
toplevel = false,
idxtype =,
idxgroup = Package commands (obsolete),
printtype =
J{0ObsoleteInterfaceMacro}{omacro}

Another type of category are the package keys:

\NewDocElement [macrolike = false ,
toplevel = false,
idxtype = key ,
idxgroup = Package keys ,
printtype = \textit{key}
J{Key}{key}

Finally we have TEX counters (with a backslash in front) and BTEX counters
(no backslash) and the two types of BTEX length registers:

\NewDocElement [macrolike = true ,
toplevel = false,
idxtype = counter ,
idxgroup = TeX counters\actualchar \protect\TeX{} counters ,
printtype = \textit{counter}
J{TeXCounter}{tcounter}

\NewDocElement [macrolike = false ,
toplevel = false,
idxtype = counter |,
idxgroup = LaTeX counters\actualchar \LaTeX{} counters ,
printtype = \textit{counter}
J{LaTeXCounter}{lcounter}

\NewDocElement [macrolike = true ,
toplevel = false,
idxtype = skip ,
idxgroup = LaTeX length\actualchar \LaTeX{} length (skip) ,
printtype = \textit{skip}
1{LaTeXSkip}{1lskip}

\NewDocElement [macrolike = true ,
toplevel = false,
idxtype = dimen ,
idxgroup = LaTeX length\actualchar \LaTeX{} length (dimen) ,
printtype = \textit{dimen}
J{LaTeXDimen}{1ldimen}

And we modify the appearance of the index: just 2 columns not 3 and all
the code-line entries get prefixed with an “¢” (for line) so that they can easily be
distinguished from page index entries.

\renewcommand\code [1] {\mbox{$\el1$-#1}}
\renewcommand\main[1] {\underline{\mbox{ℓ-#1}}}
\setcounter{IndexColumns}{2}

16

\0ldMakeindex

4 Incompatibilities between version 2 and 3

The basic approach when developing version 3 was to provide a very high level of
compatibility with version 2 so that nearly all older documents should work out
of the box without the need for any adjustments.

But as with any change there are situations where that change can result
in some sort of incompatibility, e.g., if a newly introduce command name was
already been defined in the user document then there will be a conflict that is
nearly impossible to avoid 100%.

As mentioned earlier, doc now supports options on several commands and
environments and as a result it is necessary to use braces around the argument for
\DescribeMaro if the “macro to be described” uses private letters such as @ or _
as part of its name. That was always the official syntax but in the past you could
get away with leaving out the braces more often than you can now.

The old doc documentation also claimed that redefinitions of things like
\PrintDescribeMacro could be done before loading the package (and not only
afterwards) and doc would in that case not change those commands. As the setup
mechanisms are now much more powerful and general such an approach is not
really good. So with doc version 3 modifications have to be done after the doc
package got loaded and the last modification will always win.

T’'m temped to drop compatibility with ITEX 2.09 (but so far I have left it in).

In the past it was possible to use macros declared with \outer in the argument
of \begin{macro} or \DoNotIndex even though \outer is not a concept supported
in IMTEX. This is no longer possible. More exactly, it is no longer possible to
prevent them from being indexed (as \DoNotIndex can’t be used), but you can
pass them to the macro environment as follows:

\begin{macro} [outer]{\foo}

if \foo is a macro declared with \outer. The technical reason for this change is
that in the past various other commands, such as \{ or \} did not work properly
in these arguments when they where passed as “strings” and not as single macro
tokens. But by switching to macro tokens we can’t have \outer macros because
their feature is to be not allowed in arguments. So what happens above when you
use [outer] is that the argument is read as a string with four character tokens so
that it is not recognized as being \outer.

5 OlId interfaces no longer really needed

Thirty years is a long time in the life of computer programs, so there are a good
number of interfaces within doc that are really only of historical interest (or when
processing equally old sources). We list them here, but in general we suggest that
for new documentation they should not be used.

5.1 makeindex bugs

Versions of makeindex prior to 2.9 had some bugs affecting doc. One of these,
pertaining to the % character doesn’t have a work-around appropriate for ver-
sions with and without the bug. If you really still have an old version, invoke
\OldMakeindex in a package file or the driver file to prevent problems with index

17

\CharacterTable
\CheckSum

entries such as \%, although you’ll probably normally want to turn off indexing of
\% anyway. Try to get an up-to-date makeindex from one of the TEX repositories.

5.2 File transmission issues

In the early days of the Internet file transmission issues have been a serious prob-
lem. There was a famous gateway in Rochester, UK that handled the traffic from
the European continent to the UK and that consisted of two IBM machines run-
ning with different codepages (that had non-reversible differences). As a result
“strange” TEX characters got replaced with something else with the result that
the files became unusable.

To guard against this problem (or rather to detect it if something got broken
in transfer I added code to doc to check a static character table and also to have
a very simple checksum feature (counting backslashes).

These days the \CheckSum is of little value (and a lot of pain for the developer)
and character scrambling doesn’t happen any more so the \CharacterTable is
essentially useless. Thus neither should be used in new developments.

To overcome some of the problems of sending files over the networks we devel-
oped two macros which should detect corrupted files. If one places the lines

%%\CharacterTable
%% {Upper-case
%% Lower-case

\A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\VAW\X\Y\Z
\a\b\c\d\e\f\g\h\i\j\k\1\m\n\o\p\q\r\s\t\u\v\w\x\y\z

%% Digits \O\1\2\3\4\5\6\7\8\9

%% Exclamation \! Double quote " Hash (number) \#

%% Dollar \$ Percent \% Ampersand \&
%% Acute accent \’ Left paren \ (Right paren \)
%% Asterisk * Plus \+ Comma \,
%% Minus \- Point \. Solidus \/
%% Colon \: Semicolon \; Less than \<
%% Equals \= Greater than \> Question mark \?
%% Commercial at \@ Left bracket \[Backslash \\
%% Right bracket \] Circumflex \~ Underscore _
%% Grave accent \°¢ Left brace \{ Vertical bar |

%% Right brace \} Tilde \~}

hh

at the beginning of the file then character translation failures will be detected,
provided of course, that the used doc package has a correct default table. The
percent signs'* at the beginning of the lines should be typed in, since only the doc
package should look at this command.

Another problem of mailing files is possible truncation. To detect these sort of
errors we provide a \CheckSum macro. The check-sum of a file is simply the number
of backslashes in the code, i.e. all lines between the macrocode environments. But
don’t be afraid: you don’t have count the code-lines yourself; this is done by the
doc package for you. You simply have add

% \CheckSum{0}

near the beginning of the file and use the \MaybeStop (which starts looking for
backslashes) and the \Finale command. The latter will inform you either that

14There are two percent signs in each line. This has the effect that these lines are not removed
by the docstrip.tex program.

18

your file has no check-sum (telling you the right number) or that your number
is incorrect if you put in anything other than zero but guessed wrong (this time
telling you both the correct and the incorrect one). Then you go to the top of
your file again and change the line to the right number, i.e., line

% \CheckSum{(number)}

and that’s all.

While \CharacterTable and \CheckSum have been important features in the
early days of the public internet when doc was written as the mail gateways back
then were rather unreliable and often mangled files they are these days more a
nuisance than any help. They are therefore now fully optional and no longer

recommended for use with new files.

6 Introduction to previous releases

Original abstract: This
package contains the defi-
nitions that are necessary
to format the documenta-
tion of package files. The
package was developed in
Mainz in cooperation with
the Royal Military College
of Science. This is an up-
date which documents var-
ious changes and new fea-
tures in doc and integrates
the features of newdoc.

The TEX macros which are described
here allow definitions and documenta-
tion to be held in one and the same file.
This has the advantage that normally
very complicated instructions are made
simpler to understand by comments in-
side the definition. In addition to this,
updates are easier and only one source
file needs to be changed. On the other
hand, because of this, the package files
are considerably longer: thus TEX takes
longer to load them. If this is a prob-
lem, there is an easy remedy: one needs
only to run the docstrip.tex program
that removes nearly all lines that begin
with a percent sign.

The idea of integrated documenta-
tion was born with the development of
the TEX program; it was crystallized
in Pascal with the WEB system. The
advantages of this method are plain to
see (it’s easy to make comparisons [2]).
Since this development, systems similar
to WEB have been developed for other
programming languages. But for one
of the most complicated programming
languages (TEX) the documentation has
however been neglected. The TEX world
seems to be divided between:—

e a couple of “wizards”, who produce
many lines of completely unread-
able code “off the cuff”, and

e many users who are amazed that
it works just how they want it to
do. Or rather, who despair that
certain macros refuse to do what
is expected of them.

I do not think that the WEB sys-
tem is the reference work; on the con-
trary, it is a prototype which suffices
for the development of programs within
the TEX world. It is sufficient, but
not totally sufficient.'”® As a result

15T know that this will be seen differently by a few people, but this product should not be
seen as the finished product, at least as far as applications concerning TEX are concerned. The
long-standing debate over ‘multiple change files’ shows this well.

19

of WEB, new programming perspec-
tives have been demonstrated; unfortu-
nately, though, they haven’t been de-
veloped further for other programming
languages.

The method of documentation of
TEX macros which I have introduced
here should also only be taken as a first
sketch. It is designed explicitly to run
under KTEX alone. Not because I was of
the opinion that this was the best start-
ing point, but because from this starting
point it was the quickest to develop.'®
As a result of this design decision, I had
to move away from the concept of mod-
ularization; this was certainly a step

backward.

I would be happy if this article could
spark off discussion over TEX documen-
tation. I can only advise anyone who
thinks that they can cope without docu-
mentation to “Stop Time” until he or she
completely understands the AAMS-TEX
source code.

Using the doc package

Just like any other package, invoke it by
requesting it with a \usepackage com-
mand in the preamble. doc’s use of
\reversemarginpars may make it in-
compatible with some classes.

Preface to version 1.7 (from around 1992)

This version of doc.dtx documents
changes which have occurred since the
last published version [5] but which have
been present in distributed versions of
doc.sty for some time. It also inte-
grates the (undocumented) features of
the distributed newdoc.sty.

The following changes and additions
have been made to the user interface
since the published version [5]. See §2
for more details.

Driver mechanism \DocInput is
now used in the driver file to input
possibly multiple independent doc
files and doc no longer has to be
the last package. \IndexListing
is replaced by \IndexInput;

Indexing is controlled by \PageIndex
and \CodelineIndex, one of
which must be specified to pro-
duce an index—there is no longer

a \makeindex in the default
\DocstyleParms;
The macro environment now takes

as argument the macro name with
the backslash;

Verbatim text Newlines are now for-
bidden inside \verb and com-
mands \MakeShortVerb and
\DeleteShortVerb are provided
for verbatim shorthand;

\par can now be used in \DoNotIndex;

Checksum /character table support
for ensuring the integrity of dis-
tributions is added;

\printindex becomes \PrintIndex;

multicol.sty is no longer necessary
to use doc or print the docu-
mentation (although it is recom-
mended);

‘Docstrip’ modules are recognized
and formatted specially.

As well as adding some completely
new stuff, the opportunity has been
taken to add some commentary to the
code formerly in newdoc and that added
after version 1.5k of doc. Since (as
noted in the sections concerned) this
commentary wasn’t written by Frank
Mittelbach but the code was, it is prob-
ably mot true in this case that “if the

16This argument is a bad one, however, it is all too often trotted out.

20

code

and comments disagree both are

probably wrong”!

Bugs
There are some known bugs in this ver-
sion:

e The \DoNotIndex command

doesn’t work for some single char-
acter commands most noticeable

\h-

The ‘General changes’ glossary en-
try would come out after macro
names with a leading ! and possi-
bly a leading ";

If you have an old version of make-
index long \changes entries will
come out strangely and you may
find the section header amalga-
mated with the first changes en-
try. Try to get an up-to-date one
(see p. 17);

Because the accompanying make-
index style files support the in-
consistent attribute specifications
of older and newer versions make-
index always complains about
three ‘unknown specifier’s when
sorting the index and changes en-
tries.

If \MakeShortVerb and
\DeleteShortVerb are used with

Acknowledgements

single character arguments, e.g.,
{1} instead of {\|} chaos may
happen.

(Some ‘features’ are documented be-

Wish list

e Hooks to allow \DescribeMacro

and \DescribeEnv to write out
to a special file information about
the package’s ‘exported’ defini-
tions which they describe. This
could subsequently be included in
the docstripped .sty file in a
suitable form for use by smart
editors in command completion,
spelling checking etc., based on
the packages used in a document.
This would need agreement on a
‘suitable form’.

Indexing of the modules used in
docstrip’s %< directives. I'm not
sure how to index directives con-
taining module combinations;

Writing out bibliographic infor-
mation about the package;

Allow turning off use of the spe-
cial font for, say, the next guarded
block.

I would like to thank all folks at Mainz and at the Royal Military College of Science
for their help in this project. Especially Brian and Rainer who pushed everything
with their suggestions, bug fixes, etc.

A big thank you to David Love who brought the documentation up-to-date
again, after I neglected this file for more than two years. This was most certainly
a tough job as many features added to doc.dtx after its publication in TUGboat
have been never properly described. Beside this splendid work he kindly provided
additional code (like “docstrip” module formatting) which I think every doc user
will be grateful for.

21

References

[1] G. A. BURGER. Wunderbare Reisen zu Wasser und zu Lande, Feldziige und
lustige Abenteuer des Freyherrn v. Miinchhausen. London, 1786 & 1788.

[2] D. E. KNUTH. Literate Programming. Computer Journal, Vol. 27, pp. 97-111,
May 1984.

[3] D. E. KNuTH. Computers & Typesetting (The TgXbook). Addison-Wesley,
Vol. A, 1986.

[4] L. LampoRT. Makelndex: An Index Processor for WTEX. 17 February 1987.
(Taken from the file makeindex.tex provided with the program source code.)

[5] FRANK MITTELBACH. The doc-option. TUGboat, Vol. 10(2), pp. 245-273,
July 1989.

[6] FRANK MITTELBACH, DENYS DUCHIER AND JOHANNES BRAAMS.
docstrip.dtx. The file is part of core IMTEX.

[7] R. E. RASPE (*1737, 11797). Baron Miinchhausens narrative of his marvelous
travels and campaigns in Russia. Oxford, 1785.

[8] RAINER SCHOPF. A New Implementation of BTEX’s verbatim and verbatim*
Environments. File verbatim.doc, version 1.4i.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols \marginparwidth 11
TTA 4 \mathsurround 11
T 4 \parindent 11
ETEX length (skip):
L \MacrocodeTopsep 5, 11
TEX commands: \MacroTopsep 5, 11
\documentclass £-2 \parfillskip 11
\SetupDoC £-13 \parskip 11
\usepackage -4, 0-5 \rightskip 11
IXTEX counters:
GlossaryColumns 13 P
IndexColumns 11 Package commands (obsolete):
StandardModuleDepth 14 \CharacterTable 18
BTEX length (dimen): \CheckSum 18
\columnsep 11 \OldMakeindex 17
\GlossaryMin 18 \StopEventually 12
\hfuzz ¢-15 Package commands:
\IndexMin 11, 11 N* 10
\MacroIndent 5, 11 \@idxitem 11
\marginparpush 11 \actualchar 9

\AlsoImplementation 12

\AltMacroFont 14
\bslash 14
\changes 13
\CheckModules 14
\code 11
\CodelineIndex 9, £-11
\CodelineNumbered 9
\DeleteShortVerb 11
\DescribeEnv 5
\DescribeMacro 5
\DisableCrossrefs 8, ¢-10
\DocInput 3, £-18
\DocstyleParms 11
\DoNotIndex 8
\DontCheckModules 14
\EnableCrossrefs 8, £-9
\encapchar 9
\Finale 12
\GlossaryParms 18
\GlossaryPrologue 13
\IndexInput 3,13
\IndexParms 11
\IndexPrologue 11
\levelchar 9
\MacroFont 6
\main, 11
\MakePrivateLetters 14
\MakeShortVerb 11
\MakeShortVerb* 11
\maketitle 12
\MaybeStop 12
\meta, 12
\Module 14
\NewDocElement 6
\OnlyDescription {7, 12 ¢-14
\PageIndex 8
\PrintChanges 18
\PrintDescribeEnv 6
\PrintDescribeMacro 6
\PrintEnvName 6
\PrintIndex 10
\PrintMacroName 6
\ProvideDocElement 7
\ps@titlepage 12

23

\quotechar 9
\RecordChanges £-12, 13
\RenewDocElement 7
\SetupDoC 4
\SortIndex 10
\SpecialEnvIndex 9
\SpecialEscapechar 8
\Speciallndex 10
\SpecialMacroIndex 9
\SpecialMainEnvIndex 9
\SpecialMainMacroIndex 9
\SpecialShortIndex 10
\theCodelineNo 9
\usage 11
\verb 8
\verbatimchar 10

Package environments:
environment 6
MACTO © v vv vttt 5
macrocode 4
macrocode* 5
theindex 11
verbatim 8
verbatim* 8

Package options:
debugshow 3
envlike 7
hyperref 3
idxgroup 7
idxtype 7
macrolike 7
multicol 3
nohyperref 3
noindex 3
nomulticol 3
noprint 3
notoplevel 7
printtype 7
reportchangedates 3
toplevel 7

T

TEX counters:
\hbadness {-16
\tolerance 11

	Contents
	1 Introduction
	2 The User Interface
	2.1 The driver file
	2.2 Package options
	2.3 General conventions
	2.4 Describing the usage of macros and environments
	2.5 Describing the definition of macros and environments
	2.6 Formatting names in the margin
	2.7 Providing further documentation items
	2.8 Displaying sample code verbatim
	2.9 Using a special escape character
	2.10 Cross-referencing all macros used
	2.11 Producing the actual index entries
	2.12 Setting the index entries
	2.13 Changing the default values of style parameters
	2.14 Short input of verbatim text pieces
	2.15 Additional bells and whistles

	3 Examples and basic usage summary
	3.1 Basic usage summary
	3.2 Examples

	4 Incompatibilities between version 2 and 3
	5 Old interfaces no longer really needed
	5.1 makeindex bugs
	5.2 File transmission issues

	6 Introduction to previous releases
	References
	Index
	Symbols
	L
	P
	T

