
Asymptote Reference Card

Program structure/functions
import "filename" import module
import "filename" as name import filename as module name
include "filename" include verbatim text from file
type f (type,. . .); optional function declaration
type name; variable declaration
type f (type arg,. . .) { function definition

statements
return value;

}

Data types/declarations
boolean (true or false) bool

tri-state boolean (true, default, or false) bool3

integer int

float (double precision) real

ordered pair (complex number) pair

character string string

fixed piecewise cubic Bezier spline path

unresolved piecewise cubic Bezier spline guide

color, line type/width/cap, font, fill rule pen

label with position, alignment, pen attributes Label

drawing canvas picture

affine transform transform

constant (unchanging) value const

allocate in higher scope static

no value void

inhibit implicit argument casting explicit

structure struct

create name by data type typedef type name

3D data types (import three;)
ordered triple triple

3D path path3

3D guide guide3

3D affine transform transform3

Constants
exponential form 6.02e23

TEX string constant "abc. . . de"
TEX strings: special characters \\, \"

C strings: constant ’abc. . . de’
C strings: special characters \\, \" \’ \?

C strings: newline, cr, tab, backspace \n \r \t \b

C strings: octal, hexadecimal bytes \0-\377 \x0-\xFF

Operators
arithmetic operations + - * /

modulus (remainder) %

comparisons == != > >= < <=

not !

and or (conditional evaluation of RHS) && ||

and or xor & | ^

cast expression to type (type) expr
increment decrement prefix operators ++ --

assignment operators += -= *= /= %=

conditional expression expr1 ? expr2 : expr3
structure member operator name.member
expression evaluation separator ,

Flow control
statement terminator ;

block delimeters { }

comment delimeters /* */

comment to end of line delimiter //

exit from while/do/for break;

next iteration of while/do/for continue;

return value from function return expr;
terminate execution exit();

abort execution with error message abort(string);

Flow constructions (if/while/for/do)

if(expr) statement
else if(expr) statement
else statement

while(expr)
statement

for(expr1; expr2; expr3)
statement

for(type var : array)
statement

do statement
while(expr);

1

Arrays
array type[] name;
array element i name[i]
array indexed by elements of int array A name[A]
anonymous array new type[dim]

array containing n deep copies of x array(n,x)

length name.length
cyclic flag name.cyclic
pop element x name.pop()
push element x name.push(x)
append array a name.append(a)
insert rest arguments at index i name.insert(i,. . .)
delete element at index i name.delete(i)
delete elements with indices in [i,j] name.delete(i,j)
delete all elements name.delete()
test whether element n is initialized name.initialized(n)
array of indices of initialized elements name.keys
complement of int array in {0,. . . ,n-1} complement(a,n)

deep copy of array a copy(a)

array {0,1,. . . ,n-1} sequence(n)

array {n,n+1,. . . ,m} sequence(n,m)

array {n-1,n-2,. . . ,0} reverse(n)

array {f(0),f(1),. . . ,f(n-1)} sequence(f,n)

array obtained by applying f to array a map(f,a)

uniform partition of [a,b] into n intervals uniform(a,b,n)

concat specified 1D arrays concat(a,b,. . .)
return sorted array sort(a)

return array sorted using ordering less sort(a,less)

search sorted array a for key search(a,key)

index of first true value of bool array a find(a)

index of nth true value of bool array a find(a,n)

Initialization
initialize variable type name=value;
initialize array type[] name={. . . };

path connectors
straight segment --

Beziér segment with implicit control points ..

Beziér segment with explicit control points ..controls c0 and c1..

concatenate &

lift pen ^^

..tension atleast 1.. ::

..tension atleast infinity.. ---

Labels
implicit cast of string s to Label s

Label s with relative position and alignment Label(s,real,pair)

Label s with absolute position and alignment Label(s,pair,pair)

Label s with specified pen Label(s,pen)

draw commands
draw path with current pen draw(path)

draw path with pen draw(path,pen)

draw labeled path draw(Label,path)

draw arrow with pen draw(path,pen,Arrow)

draw path on picture draw(picture,path)

draw visible portion of line through two pairs drawline(pair,pair)

fill commands
fill path with current pen fill(path)

fill path with pen fill(path,pen)

fill path on picture fill(picture,path)

label commands
label a pair with optional alignment z label(Label,pair,z)

label a path with optional alignment z label(Label,path,z)

add label to picture label(picture,Label)

clip commands
clip to path clip(path)

clip to path with fill rule clip(path,pen)

clip picture to path clip(picture,path)

pens
Grayscale pen from value in [0,1] gray(g)

RGB pen from values in [0,1] rgb(r,g,b)

CMYK pen from values in [0,1] cmyk(r,g,b)

RGB pen from heximdecimal string] rgb(string)

heximdecimal string from rgb pen] hex(pen)

hsv pen from values in [0,1] hsv(h,s,v)

invisible pen invisible

default pen defaultpen

current pen currentpen

solid pen solid

dotted pen dotted

wide dotted current pen Dotted

wide dotted pen Dotted(pen)

dashed pen dashed

long dashed pen longdashed

dash dotted pen dashdotted

long dash dotted pen longdashdotted

PostScript butt line cap squarecap

PostScript round line cap roundcap

PostScript projecting square line cap extendcap

miter join miterjoin

round join roundjoin

bevel join beveljoin

pen with miter limit miterlimit(real)

zero-winding fill rule zerowinding

even-odd fill rule evenodd

align to character bounding box (default) nobasealign

align to TEX baseline basealign

pen with font size (pt) fontsize(real)

LaTeX pen from encoding,family,series,shape font(strings)

TEX pen font(string)

scaled TEX pen font(string,real)

PostScript font from strings Courier(series,shape)

pen with opacity in [0,1] opacity(real)

construct pen nib from polygonal path makepen(path)

pen mixing operator +

2

path operations
number of segments in path p length(p)

number of nodes in path p size(p)

is path p cyclic? cyclic(p)

is segment i of path p straight? straight(p,i)

is path p straight? piecewisestraight(p)

coordinates of path p at time t point(p,t)

direction of path p at time t dir(p,t)

direction of path p at length(p) dir(p)

unit(dir(p)+dir(q)) dir(p,q)

acceleration of path p at time t accel(p,t)

radius of curvature of path p at time t radius(p,t)

precontrol point of path p at time t precontrol(p,t)

postcontrol point of path p at time t postcontrol(p,t)

arclength of path p arclength(p)

time at which arclength(p)=L arctime(p,L)

point on path p at arclength L arcpoint(p,L)

first value t at which dir(p,t)=z dirtime(p,z)

time t at relative fraction l of arclength(p) reltime(p,l)

point at relative fraction l of arclength(p) relpoint(p,l)

point midway along arclength of p midpoint(p)

path running backwards along p reverse(p)

subpath of p between times a and b subpath(p,a,b)

times for one intersection of paths p and q intersect(p,q)

times at which p reaches minimal extents mintimes(p)

times at which p reaches maximal extents maxtimes(p)

intersection times of paths p and q intersections(p,q)

intersection times of path p with ‘--a--b--’ intersections(p,a,b)

intersection times of path p crossing x =x times(p,x)

intersection times of path p crossing y =z.y times(p,z)

intersection point of paths p and q intersectionpoint(p,q)

intersection points of p and q intersectionpoints(p,q)

intersection of extension of P--Q and p--q extension(P,Q,p,q)

lower left point of bounding box of path p min(p)

upper right point of bounding box of path p max(p)

subpaths of p split by nth cut of knife cut(p,knife,n)

winding number of path p about pair z windingnumber(p,z)

pair z lies within path p? interior(p,z)

pair z lies within or on path p? inside(p,z)

path surrounding region bounded by paths buildcycle(. . .)
path filled by draw(g,p) strokepath(g,p)

unit square with lower-left vertex at origin unitsquare

unit circle centered at origin unitcircle

circle of radius r about c circle(c,r)

arc of radius r about c from angle a to b arc(c,r,a,b)

unit n-sided polygon polygon(n)

unit n-point cyclic cross cross(n)

pictures
add picture pic to currentpicture add(pic)

add picture pic about pair z add(pic,z)

affine transforms
identity transform identity()

shift by values shift(real,real)

shift by pair shift(pair)

scale by x in the x direction xscale(x)

scale by y in the y direction yscale(y)

scale by x in both directions scale(x)

scale by real values x and y scale(x,y)

map (x, y)→ (x+sy, y) slant(s)

rotate by real angle in degrees about pair z rotate(angle,z=(0,0))

reflect about line from P--Q reflect(P,Q)

string operations
concatenate operator +

string length length(string)

position ≥ pos of first occurrence of t in s find(s,t,pos=0)

position ≤ pos of last occurrence of t in s rfind(s,t,pos=-1)

string with t inserted in s at pos insert(s,pos,t)

string s with n characters at pos erased erase(s,pos,n)

substring of string s of length n at pos substr(s,pos,n)

string s reversed reverse(s)

string s with before changed to after replace(s,before,after)

string s translated via {{before,after},. . . } replace(s,string [][] table)

format x using C-style format string s format(s,x)

casts hexadecimal string to an integer hex(s)

casts x to string using precision digits string(x,digits=realDigits)

current time formatted by format time(format="%a %b %d %T %Z %Y")

time in seconds of string t using format seconds(t,format)

string corresponding to seconds using format time(seconds,format)

split s into strings separated by delimiter split(s,delimiter="")

May 2014 v1.1. Copyright c© 2014 John C. Bowman

Permission is granted to make and distribute copies of this card, with or

without modifications, provided the copyright notice and this permission

notice are preserved on all copies.

3

