Asymptote Reference Card

Program structure/functions
import "filename" import module
import "filename" as name import filename as module name
include "filename" include verbatim text from file
type f(type,...); optional function declaration
type name; variable declaration
type f(type arg,... function definition

statements

return value;

) {

}

Data types/declarations

boolean (true or false) bool
tri-state boolean (true, default, or false) bool3

integer int

float (double precision) real
ordered pair (complex number) pair
character string string
fixed piecewise cubic Bezier spline path
unresolved piecewise cubic Bezier spline guide
color, line type/width/cap, font, fill rule pen
label with position, alignment, pen attributes Label
drawing canvas picture
affine transform transform
constant (unchanging) value const
allocate in higher scope static
no value void
inhibit implicit argument casting explicit
structure struct

create name by data type typedef type name

3D data types (import three;)

ordered triple triple

3D path path3

3D guide guide3

3D affine transform transform3
Constants

exponential form 6.02e23

TEX string constant "abc...de"
TEX strings: special characters A\, "

C strings: constant ’abc...de’

C strings: special characters A\, A"\ NT?
C strings: newline, cr, tab, backspace \n \r \t \b
C strings: octal, hexadecimal bytes \0-\377 \x0-\xFF

Operators

arithmetic operations + - %/
modulus (remainder) %

comparisons == l= > >= < <=
not !

and or (conditional evaluation of RHS) && ||

and or xor & |-

(type) expr
++ =
+= —= %= /= "/°=

cast expression to type

increment decrement prefix operators
assignment operators

conditional expression expri 7 erpro
structure member operator name . member
expression evaluation separator ,

Flow control

statement terminator

{1

block delimeters

comment delimeters /* */
comment to end of line delimiter //

exit from while/do/for break;

next iteration of while/do/for continue;
return value from function return expr;
terminate execution exit();

abort execution with error message
Flow constructions (if/while/for/do)

abort (string) ;

if (expr) statement
else if (expr) statement
else statement

while(expr)
statement

for(expry; exprg; exprs)
statement

for(type var :
statement

array)

do statement
while (expr);

erprs

Arrays

array
array element i

array indexed by elements of int array A
anonymous array

array containing n deep copies of x
length

cyclic flag

pop element x

push element x

append array a

insert rest arguments at index i

delete element at index i

delete elements with indices in [i,]]
delete all elements

test whether element n is initialized
array of indices of initialized elements
complement of int array in {0,...,n-1}
deep copy of array a

array {0,1,...,n-1}

array {n,n+1,...,m}

array {n-1,n-2,...,0}

array {£(0),f(1),...,f(n-1)}

array obtained by applying f to array a
uniform partition of [a,b] into n intervals
concat specified 1D arrays

return sorted array

return array sorted using ordering less
search sorted array a for key

index of first true value of bool array a
index of nth true value of bool array a

Initialization

initialize variable
initialize array

path connectors

straight segment

Beziér segment with implicit control points
Beziér segment with explicit control points
concatenate

lift pen

..tension atleast 1..

..tension atleast infinity..

Labels

implicit cast of string s to Label

Label s with relative position and alignment
Label s with absolute position and alignment
Label s with specified pen

draw commands

draw path with current pen

draw path with pen

draw labeled path

draw arrow with pen

draw path on picture

draw visible portion of line through two pairs

type [l name;
name [1]

name [A]

new type[dim]
array(n,x)
name.length
name.cyclic
name .pop ()

name .push(x)
name .append (a)
name.insert(i,...)
name.delete (i)
name.delete(i,j)
name.delete()
name.initialized(n)
name.keys
complement (a,n)
copy(a)

sequence (n)
sequence(n,m)
reverse(n)
sequence(f,n)
map(f,a)
uniform(a,b,n)
concat(a,b,...)
sort (a)
sort(a,less)
search(a,key)
find(a)

find(a,n)

type name=value;
type [l name={...};

..controls cO and cl.

s
Label(s,real,pair)
Label(s,pair,pair)
Label(s,pen)

draw(path)
draw(path,pen)
draw(Label,path)
draw(path,pen,Arrow)
draw(picture,path)
drawline(pair,pair)

fill commands

fill path with current pen
fill path with pen
fill path on picture

label commands

label a pair with optional alignment z
label a path with optional alignment z
add label to picture

clip commands

clip to path
clip to path with fill rule
clip picture to path

pens

Grayscale pen from value in [0,1]
RGB pen from values in [0,1]
CMYK pen from values in [0,1]
RGB pen from heximdecimal string]
heximdecimal string from rgb pen)]
hsv pen from values in [0,1]

invisible pen

default pen

current pen

solid pen

dotted pen

wide dotted current pen

wide dotted pen

dashed pen

long dashed pen

dash dotted pen

long dash dotted pen

PostScript butt line cap

PostScript round line cap

PostScript projecting square line cap
miter join

round join

bevel join

pen with miter limit

zero-winding fill rule

even-odd fill rule

align to character bounding box (default)
align to TEX baseline

pen with font size (pt)

LaTeX pen from encoding,family,series,shape
TgEX pen

scaled TEX pen

PostScript font from strings

pen with opacity in [0,1]

construct pen nib from polygonal path
pen mixing operator

£i11(path)
f£ill(path,pen)
fill(picture,path)

label(Label,pair,z)
label(Label,path,z)
label (picture,Label)

clip(path)
clip(path,pen)
clip(picture,path)

gray(g)
rgb(r,g,b)
cmyk(r,g,b)
rgb(string)
hex (pen)
hsv(h,s,v)
invisible
defaultpen
currentpen
solid

dotted

Dotted
Dotted(pen)
dashed
longdashed
dashdotted
longdashdotted
squarecap
roundcap
extendcap
miterjoin
roundjoin
beveljoin
miterlimit(real)
zerowinding
evenodd
nobasealign
basealign
fontsize(real)
font (strings)
font (string)
font(string,real)
Courier(series,shape)
opacity(real)
makepen (path)
+

path operations

number of segments in path p

number of nodes in path p

is path p cyclic?

is segment i of path p straight?

is path p straight?

coordinates of path p at time t

direction of path p at time t

direction of path p at length(p)
unit(dir(p)+dir(q))

acceleration of path p at time t

radius of curvature of path p at time t
precontrol point of path p at time t
postcontrol point of path p at time t
arclength of path p

time at which arclength(p)=L

point on path p at arclength L

first value t at which dir(p,t)=z

time t at relative fraction 1 of arclength(p)
point at relative fraction 1 of arclength(p)
point midway along arclength of p

path running backwards along p

subpath of p between times a and b

times for one intersection of paths p and q
times at which p reaches minimal extents
times at which p reaches maximal extents
intersection times of paths p and q
intersection times of path p with ‘--a--b--’
intersection times of path p crossing z =x
intersection times of path p crossing y =z.y
intersection point of paths p and q
intersection points of p and q

intersection of extension of P--Q and p--q
lower left point of bounding box of path p
upper right point of bounding box of path p
subpaths of p split by nth cut of knife
winding number of path p about pair z
pair z lies within path p?

pair z lies within or on path p?

path surrounding region bounded by paths
path filled by draw(g,p)

unit square with lower-left vertex at origin
unit circle centered at origin

circle of radius r about ¢

arc of radius r about c¢ from angle a to b
unit n-sided polygon

unit n-point cyclic cross

pictures

add picture pic to currentpicture
add picture pic about pair z

length(p)

size(p)

cyclic(p)
straight(p,i)
piecewisestraight (p)
point(p,t)
dir(p,t)

dir(p)

dir(p,q)
accel(p,t)
radius(p,t)
precontrol(p,t)
postcontrol(p,t)
arclength(p)
arctime(p,L)
arcpoint (p,L)
dirtime(p,z)
reltime(p,1)
relpoint(p,1)
midpoint (p)
reverse(p)
subpath(p,a,b)
intersect(p,q)
mintimes (p)
maxtimes (p)
intersections(p,q)
intersections(p,a,b)
times(p,x)
times(p,z)

affine transforms

identity transform

shift by values

shift by pair

scale by x in the x direction

scale by y in the y direction

scale by x in both directions

scale by real values x and y

map (z,y) — (z+sy,y)

rotate by real angle in degrees about pair z
reflect about line from P--Q

string operations

concatenate operator

string length

position > pos of first occurrence of t in s
position < pos of last occurrence of t in s
string with t inserted in s at pos

string s with n characters at pos erased
substring of string s of length n at pos
string s reversed

string s with before changed to after
string s translated via {{before,after},...}
format x using C-style format string s

casts hexadecimal string to an integer

casts x to string using precision digits
current time formatted by format

time in seconds of string t using format
string corresponding to seconds using format
split s into strings separated by delimiter

intersectionpoint(p,q)
intersectionpoints(p,q)

extension(P,Q,p,q)
min(p)

max (p)
cut(p,knife,n)
windingnumber(p,z)
interior(p,z)
inside(p,z)
buildcycle(...)
strokepath(g,p)
unitsquare
unitcircle
circle(c,r)
arc(c,r,a,b)
polygon(n)
cross(n)

add (pic)
add(pic,z)

identity ()
shift(real,real)
shift(pair)

xscale(x)

yscale(y)

scale(x)

scale(x,y)

slant(s)
rotate(angle,z=(0,0))
reflect(P,Q)

+
length(string)

find(s,t,pos=0)
rfind(s,t,pos=-1)
insert(s,pos,t)

erase(s,pos,n)

substr(s,pos,n)

reverse(s)
replace(s,before,after)
replace(s,string [J[] table)
format (s,x)

hex(s)
string(x,digits=realDigits)
time(format="%a %b %d 4T %Z %Y")
seconds (t,format)

time (seconds,format)
split(s,delimiter="")

May 2014 v1.1. Copyright © 2014 John C. Bowman

Permission is granted to make and distribute copies of this card, with or

without modifications, provided the copyright notice and this permission

notice are preserved on all copies.

